

# Regioselective reaction of a cyclic Baylis-Hillman adduct with alcohols and thiols

Rafik Gatri, Farhat Rezgui and Mohamed Moncef EL Gaïed\*

Laboratoire de Chimie Organique, Faculté des Sciences de Tunis  
Campus Universitaire, 1060 Tunis, Tunisia

J. Chem. Research (S),  
2002, 366–367  
J. Chem. Research (M),  
2002, 0879–0883

Cyclic Baylis-Hillman adduct **1** reacts with alcohols and thiols in the presence of *p*-TsOH to give regioselectively the corresponding allylic ethers **4** and thioethers **6** in satisfactory to good yields.

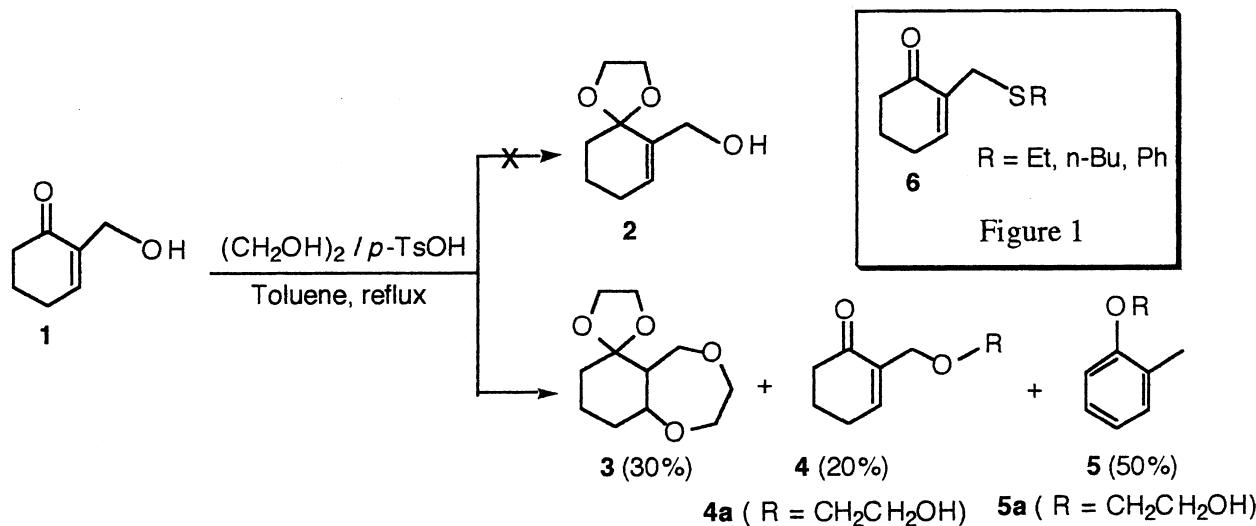
**Keyword:** cyclic Baylis-Hillman adduct

In the course of our study on the synthesis and the potentiality of cyclic Baylis-Hillman derivative **1**<sup>1–6</sup>, we have found that the reaction of this compound **1** with ethylene glycol, in the presence of *p*-toluene sulfonic acid (*p*-TsOH), did not lead to the expected ketal alcohol **2** but afforded a mixture of products **3**, **4a** and **5a** in moderate yield ~50% (Scheme 1).

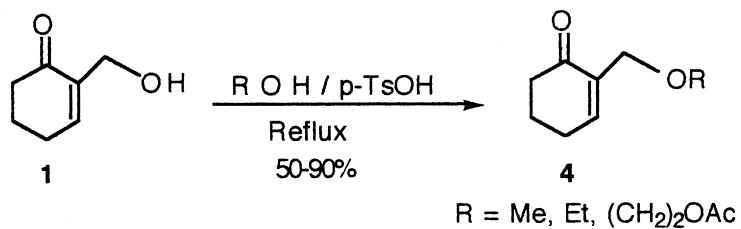
The obtained allylic ether **4a** could be a structurally interesting material since some of compound **1** derivatives exhibit biological properties.<sup>7,8</sup> In this paper, we wish to report our results concerning the behaviour of compound **1** towards monofunctional alkyl alcohols and thiols in the presence of *p*-TsOH.

The treatment of 2-(hydroxymethyl)-2-cyclohexenone **1** with a large excess of various alcohols at reflux in the presence of *p*-TsOH (1 equiv), gave regioselectively the allylic ethers **4b–d**<sup>9–10</sup> in satisfactory to good yields (Scheme 2).

Similarly, keto alcohol **1** reacted with thiols (2 equiv) in the presence of *p*-TsOH (0.3 equiv) in refluxing THF, affording allylic sulfur compounds **6**<sup>11</sup> in satisfactory to good yields (Scheme 1 inset Fig. 1).


Techniques used: IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, MS

References: 11 ; Schemes: 2


Received 1 November 2000; accepted 15 February 2002  
Paper 00/633

## References cited in this synopsis

- 1 A.B. Smith, III, B.D. Dorsey, M. Ohba, A.T. Lupo, Jr. and M.S. Malamas, *J. Org. Chem.* 1988, **53**, 4314.
- 2 F. Rezgui and M.M. EL Gaïed, *Tetrahedron Lett.* 1998, **39**, 5965.



Scheme 1 Reaction of **1** with ethylene glycol.



Scheme 2 Reaction of **1** with alcohols.

\* To receive any correspondence.

3 F. Rezgui, and M.M. EL Gaïed, *Tetrahedron* 1997, **53**, 15711.  
4 (a) F. Rezgui and M.M. EL Gaïed, *J. Chem. Res. (S)* 1999, 510;  
(b) 1999, 576.  
5 G. Li, H.-X. Wei, J.J. Gao and T.D. Caputo, *Tetrahedron Lett.* 2000, **41**, 1.  
6 For a recent review on the Baylis-Hillman reaction see:  
D. Basavaiah, P.D. Rao and R.S. Hyma, *Tetrahedron* 1996, **52**,  
8001.  
7 I. Takao, K. Kunimoto, S. Masanobu, N. Kiyohino and  
N. Takemitsu, *Chem. Abstr.* 1987, **106**, 49660m.  
8 K. Tatsuta, S. Yasuda, N. Araki, M. Takahashi and Y. Kamiya,  
*Tetrahedron Lett.* 1998, **39**, 401.  
9 I. Shimizu and J. Tsuji, *J. Am. Chem. Soc.* 1982, **104**, 5844.  
10 P. Salehi, N. Iranpoor and F.K. Behbahani, *Tetrahedron* 1998,  
**54**, 943.  
11 (a) R. Tamura, H. Katayama, K. Watabe and H. Suzuki,  
*Tetrahedron* 1990, **46**, 7557–7568; (b) P. Bradeli, A. Bareo,  
S. Benetti, G. Pellini, V. Zamirato, *Tetrahedron Lett.* 1984, **38**,  
4291.